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A B S T R A C T   

The deep structure of continental detachment faults remains debated. Thermo-mechanical models generate 
detachments that either transect the lithosphere or become distributed shear zones in the mid-lower crust, 
depending on prescribed thermo-rheological conditions. However, these geometries and prescribed conditions 
remain little constrained by geology-based reconstructions. We present stepwise, balanced reconstructions of a 
160 km-long cross-section through two detachment faults in the southwest USA. Reconstructions form the basis 
of iteratively improved 2D forward thermo-kinematic numerical simulations of detachment fault slip, footwall 
exhumation, heat advection, and footwall zircon (U-Th)/He cooling ages. Thermo-kinematic model solutions are 
calibrated iteratively against surface heat flow, pre- and post-extensional geotherms, inferred Moho tempera-
tures, and thermochronometric data from one detachment footwall. Best-fit models predict the thermal and 
geometric evolution of the crust and detachments, respectively, during extension. The detachment initially 
rooted into a mid-crustal shear zone (~7.5–12 km depth) and was probably delocalized in the deep middle crust 
(>12–15 km). The maximum principal stress was likely non-vertical in the middle crust at detachment initiation, 
possibly due to mantle upwelling. Our reconstructions suggest that the upper crust and lower crust-mantle 
lithosphere were decoupled by a weak, mid-crustal layer during early detachment faulting. The weak layer 
was thinned, cooled, partially embrittled, and therefore strengthened by continued detachment slip. This 
increased lithospheric mechanical coupling and caused the locus of upper-crustal extension to shift. Thinning of a 
weak mid-crustal layer, as is thought to precede coupled hyperextension and mantle exhumation during rifting, 
was mostly complete in our study area by ~7–6 Ma.   

1. Introduction 

Controls on rift system evolution have been explored by geodynamic 
models, which often aim to replicate certain features identified in 
seismic reflection profiles of magma-poor rifted margins (e.g. distal, 
necking, and proximal domains). However, rifted margins only reveal 
the final result of tens of millions of years of stretching, faulting, hy-
perextension, mantle exhumation, and breakup. Here, we demonstrate 
that accurate kinematic reconstructions and forward thermal modeling 
can inform the changing fault geometries, thermal evolutions, and strain 

partitioning of pre-breakup rift phases. 
We present regional-scale cross section reconstructions and thermo- 

kinematic models of detachment faulting and metamorphic core com-
plex (MCC) exhumation in the southwestern USA Cordilleran MCC belt 
(Fig. 1). Along much of this belt, the crust has been thinned locally from 
50 to 60 km (Coney and Harms, 1984; Bahadori et al., 2018; Chapman 
et al., 2019) to <30 km (Gilbert, 2012). Much of the associated crustal 
extension was achieved in Oligocene-Miocene times by regional, large- 
slip detachment faults (e.g. Wernicke, 1992; McQuarrie and Wernicke, 
2005). We show stepwise kinematic reconstructions of detachment fault 
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slip, footwall tilting and exhumation, and basin development related to 
one of the youngest MCCs in the western US (Fig. 1), which is located in 
the Eastern California Shear Zone. The kinematic reconstructions are 
constrained by well-documented structural relations, thermochronol-
ogy, syn-extensional basin histories, and paleo-topography. 

Stepwise kinematic reconstructions define a velocity field through 
time, which is used to simulate crustal area balance and advective heat 
flow. A horizon line that connects thermochronological sample sites 
from the Boundary Canyon detachment (BCD; Figs. 1 & 2) footwall is 
tracked through temperature-time space, and model zircon (U-Th)/He 
(ZHe) cooling ages are calculated (e.g., Almendral et al., 2015). The 
evolving detachment geometry and footwall exhumation path are iter-
atively adjusted until model cooling ages match existing thermochro-
nology (Beyene, 2011), allowing iterative calibration of the cross- 
sectional reconstruction. Thermo-kinematically-modeled cross-sections 
have been presented for thrust-related exhumation (Batt and Braun, 
1999; Chapman et al., 2017; McQuarrie and Ehlers, 2017; McQuarrie 
and Ehlers, 2015; Mora et al., 2015; Rak et al., 2017; Yonkee et al., 
2019), but extensional thermo-kinematic models have generally been 
limited to more-idealized scenarios or local reconstructions (Ketcham, 
1996; Robinson et al., 2010; Johnstone and Colgan, 2018; Helfrich et al., 
2020). Here, cross sections were reconstructed using the Move software 
(https://www.petex.com/products/move-suite), and thermo-kinematic 
models were created using FETKin (Almendral et al., 2015) and FET-
KinPrep (Carrillo et al., 2016). 

Our models demonstrate fault geometric, kinematic, and thermal 
evolutions during the extension/thinning phase of continental rifting. 
Specifically, we show that the Boundary Canyon detachment (BCD), 
which accommodated ~35–40 km of extension, did not penetrate the 
entire crust, but soled into a weak layer that decoupled (or weakly 
coupled) upper crustal extension from that in the lower crust and mantle 
lithosphere (e.g., Reston, 1990a/b). 

Extension, thinning, and cooling of the weak crustal layer during 
footwall uplift and exhumation (“occlusion” of Wernicke, 1992, 

“annealing” of Pérez-Gussinyé and Reston, 2001) are predicted by our 
thermal models and crustal area balance. This process likely changed the 
mechanical architecture of the lithosphere from a decoupled “jelly 
sandwich” to a thin and weak, but mechanically-coupled “crème brûlée” 
rheology (Jackson, 2002; Burov and Watts, 2006). Mid-crustal uplift, 
thinning, and cooling shown by our models facilitates interaction be-
tween brittle faults and shear zones in the lower crust and mantle lith-
osphere (e.g., Pérez-Gussinyé and Reston, 2001; Reston, 2009; Mohn 
et al., 2012), leading to the transition between relatively distributed 
extension/thinning to coupled hyperextension and mantle exhumation 
in magma-poor margins (Lavier and Manatschal, 2006; Péron-Pinvidic 
and Manatschal, 2009; Péron-Pinvidic et al., 2013; Brune et al., 2014; 
Naliboff et al., 2017). 

Our best-fit models predict also that heat advected with the uplifting 
detachment footwall creates a high geotherm (~40 ◦C/km), causing a 
4–5 km rise of the brittle-plastic transition (BPT) along the BCD. Heat 
advection, combined with development of creep-prone clay gouge along 
the shallow detachment, likely reduced the seismogenic-zone thickness 
from ~5 km to <1 km. We suggest that the thin seismogenic zone may 
help explain rare large-magnitude seismicity on active low-angle normal 
faults (Jackson and White, 1989; Wernicke, 1995; Collettini, 2011; 
Styron and Hetland, 2014), especially where heat flow is high and/or 
significant exhumation has already occurred. 

2. Geologic background 

We model a 160-km long, NW-SE cross section through the 
Grapevine-Funeral Mountains and Nopah-Resting Spring Ranges, 
northeast of Death Valley (Figs. 1-3 & B.1). The transect demonstrates 
pervasive extensional dismemberment of the older Cordilleran thrust 
belt, which likely included local thrust reactivation. The seven thrusts in 
our cross-section accommodated a total of ~100–125 km of shortening 
from Late Permian to Cretaceous times (Fig. 3f-h; Appendix A), and 
normal faults in the cross-section accommodated ~80 km of extension 
(Fig. 3a-f), primarily in Miocene time (~67 km). 

Key geometric, kinematic, and thermal constraints on faults in the 
model cross section are summarized below (Table 1). We focus on two 
major detachment faults, but details of both Permo-Mesozoic thrust 
systems and other Cenozoic normal faults are key to reconstructing the 
geologic cross-section that forms the basis of our forward thermo- 
kinematic models (section 3). Supporting details for the modeled 
thrust geometries are in Appendix A. Our kinematic reconstruction 
permits revisions to regional thrust plate correlations (Appendix A, Figs. 
A.3 & A.4), which were used previously to constrain Miocene offsets (e. 
g., Wernicke et al., 1988; Snow and Wernicke, 2000). 

2.1. Detachment faults in the model cross section 

The modeled section crosses the Boundary Canyon and Opera House 
detachment faults (BCD and OHD, respectively), which together 
accommodated ~70 km of late Miocene, NW-directed upper crustal 
extension (Fig. 2a & Fig. B.1). The BCD is a low-angle normal fault that 
juxtaposes Neoproterozoic-Paleozoic sedimentary rocks above amphib-
olite to sub-greenschist facies metamorphic rocks of the Funeral 
Mountains MCC (Labotka, 1980; Applegate et al., 1992; Applegate and 
Hodges, 1995; Hoisch and Simpson, 1993; Mattinson et al., 2007) 
(Fig. 2b). Lower-plate metamorphic grade decreases monotonically to 
the SE until footwall sedimentary rocks are reached. Most previous 
workers estimated 28–40 km of northwest-directed (~300–315◦) heave 
on the BCD (Hoisch and Simpson, 1993; Applegate and Hodges, 1995; 
Snow and Wernicke, 2000). 

Our models incorporate newly recognized offset of older Cenozoic 
faults and support 35–40 km of BCD slip. Two sets of Eocene-late 
Miocene normal faults in the northern Funeral Mountains are appar-
ently cut by the BCD (Wright and Troxel, 1993) and are correlated here 
with similar faults in the Grapevine Mountains (Fig. 2a, Fig. B.1 & 

Fig. 1. Map of the western USA showing the generally N-S belt of Cordillera 
Metamorphic Core Complexes (MCCs) (right) (after Wust, 1986) and map of the 
central Death Valley region, USA (left), showing major extensional plates 
modeled in this study. The NW-SE cross-section (bottom left) shows the basic 
structure of the two detachments modeled in this study. LCRC: Lower Colorado 
River Corridor. 
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Table 1). The offset normal faults strike approximately perpendicular to 
the line of section and are shown in the reconstructions (Fig. 3). The 
east-dipping Moonlight Canyon fault (pink in Figs. 2a, 3, & Fig. B.1) in 
the Grapevine Mountains (Niemi, 2012) is correlated with a kinemati-
cally similar, southeast-dipping normal fault at Monarch Canyon 
(Fig. 2b & Fig. B.1) in the northwestern Funeral Mountains (Wright and 
Troxel, 1993) (also pink in Figs. 2a, 3, & Fig. B.1). Southeast of Monarch 
Canyon ~5 km, northwest-dipping normal faults in the BCD footwall 
have throws similar to the faults in the Grapevine Mountains (green in 
Fig. 2). The offset normal faults yield BCD heave of 35–40 km, 
depending on projections into the cross section (Fig. 2a). We used 
37.5 km of heave in our reconstruction and forward models. 

Syn-extensional stratal ages and footwall thermochronometry 
constrain BCD slip to ~12–7 Ma (7.5 mm/yr average slip rate assuming 
37.5 km of heave). BCD slip probably initiated just before ~11.5 Ma (age 
of tuff at base of section), and ended shortly after ~7.5 Ma (age of lava at 
top of section) (Fridrich and Thompson, 2011; Fridrich et al., 2012). 
Regression of BCD footwall ZHe ages vs. distance in the slip direction 
yields an inflection at ~10–11 Ma (Beyene, 2011), interpreted as the 
initiation of rapid footwall cooling. Beyene’s (2011) favored linear 
regression suggests a slip rate of 8.5 ± 2.0 mm/yr for the BCD, consistent 
with our prescribed BCD slip rate (7.5 mm/yr). The BCD footwall cooled 
rapidly (~41 ◦C/Myr) from ~11–7 Ma, based on combined titanite 
(9 Ma ± 2.6 Ma), zircon (10.6 ± 1.6 Ma), and apatite (6.6 Ma ± 3 Ma) 
fission-track ages from Monarch Canyon in the northern Funeral 
Mountains (Holm and Dokka, 1991). A 5.6 ± 1.4 Ma apatite fission-track 
age, collected ~5 km to the southeast of the 6.6 Ma sample (Fig. 2a), 
records cooling of the BCD footwall (Hoisch and Simpson, 1993) after 
7 Ma. We infer that this latest cooling is related to ~4 km of Pliocene- 
recent exhumation by slip on the NW-SE-trending, range-bounding 
northern Death Valley and Grapevine fault zones (NDVF & GFZ, 
respectively; Fig. 2a), which separate northern Death Valley from the 
Grapevine-Funeral Mountains. These fault zones accommodated at least 
5 km of throw, based on gravity data and escarpment height (Blakely 
et al., 1999), most likely after ca. 7.5–6.5 Ma (Fridrich and Thompson, 
2011; Fridrich et al., 2012). 

Net slip of the OHD is poorly defined, but syn-orogenic strata and 
previous reconstructions suggest >25 km of slip from ~16–7 Ma. 
Southeast-thickening growth strata and anticlinal rollover in the upper 
plate suggest extension above a listric fault (Cemen et al., 1985; Cemen 
and Wright, 1990). Gravity-based depth-to-bedrock models indicate an 
~3 km thickness of the upper-plate Amargosa Valley basin (Fig. 3a) 
(Blakely et al., 1999), which is inferred to be filled with both ca. 
16–12 Ma and 12–6 Ma packages of synorogenic strata (Cemen et al., 
1999; Fridrich et al., 2012) (Fig. 3a-e). Dips in the older package in-
crease northwestward from 35◦ to 45◦ over an ~2 km distance (Fridrich 
et al., 2012). The area between the Clery thrust in the southeastern 
Funeral Mountains and the Chicago Pass thrust in the Nopah-Resting 
Spring Range was extended by at least 200% (Wernicke et al., 1982; 
Snow and Wernicke, 2000), which supports >18 km of heave on the 
OHD. Our reconstructions show 22.6 km of heave on the OHD, which 
includes ~6.9 km of heave on synthetic, upper-plate normal faults in 
Amargosa Valley and in the Funeral Mountains range block (Table 1 & 
Fig. 3). 

3. Thermo-kinematic model setup 

In this section we describe how the geologic cross-section was con-
structed, retro-deformed to its pre-extension state, and forward modeled 
(sections 3.1–3.3). Thermo-kinematic finite-element numerical simula-
tions, including constraints on parameter inputs and the results of 
parameter tests, are described in section 3.4. 

3.1. Initial cross-section construction 

The structural cross section (Fig. 3 & Fig. B.1) was drafted using 
standard methods and runs through abundant exposures of bedrock. It 
runs generally parallel to the regional extension direction (Wernicke 
et al., 1988; Snow and Wernicke, 2000; McQuarrie and Wernicke, 
2005), so standard section balancing methods can be applied (Cham-
berlin, 1910; Dahlstrom, 1969; Suppe, 1985; Groshong, 1994, 1996; 
Groshong Jr et al., 2012). The model cross section has 306◦ azimuth 
(Figs. 1 & 2a), within the range of BCD upper-plate transport directions 
determined by previous studies (Table 1). The OHD transport direction 
is less well-constrained by fault kinematic data, but previous workers 
interpreted a generally west-northwest-oriented regional extension from 
fault attitudes and hanging-wall rollover (e.g. Wernicke et al., 1982, 
1988; Fridrich et al., 2012). The section also is subparallel to the 
transport direction of most thrusts in the model transect (generally SE; 
Fridrich et al., 2012; Table 1), providing an opportunity to examine the 
superimposed strain patterns. 

Faults and unit contacts were projected into the subsurface using 
surface data, gravity models, and previous cross sections. Shallow 
(0–2 km depth) fault geometries were generally adapted from previous 
cross-sections (see Fig. B.1 for adaptations of previous work), though we 
omitted some small offset (<1 km) faults, combined closely-spaced 
(1–2 km) faults, and extended fault interpretations deeper to a basal 
detachment in the basement complex (unit Xmi). The salient aspects of 
fault geometries and kinematics are given in Table 1. Thermochrono-
metric and structural orientation data within 0–4.5 km of section lines 
were projected to the sections (Fig. 2b). Thicknesses from published 
sections (Fig. 3 & Fig. B.2) were used to build the stratigraphy into the 
subsurface to intersections with projected faults. Normal faults had 
initially listric geometries, soling into a basal decollement in the 
regional basement complex (unit Xmi). Fault geometries were modified 
iteratively to maintain area balance and satisfy thermochronometric 
constraints on forward thermal models (Fig. 4) (see section 3.2 below). 

3.2. Reconstruction and forward kinematic modeling methods 

Cross section reconstruction of normal faults and fault-bounded ba-
sins was done in several increments, each of which include multiple 
steps done iteratively (Fig. 4): 1) rigid translation of upper plates, 2) 
inclined antithetic simple shear to translate upper plate features onto 
fault footwalls, 3) isostatic adjustments to place detachment footwalls at 
proper paleo-depths and honor other constraints. 

Normal fault hanging walls were first translated as rigid blocks 
(Fig. 4a/b). Extensional area (Fig. 4b) was calculated based on the 
prescribed horizontal block motion from offset features and fault 

Fig. 2. Geologic maps of (a) the study area showing the modeled cross section line (Fig. 3) and (b) the northern Funeral Mountains. s1, s2, etc. mark the locations of 
type stratigraphic sections used as thicknesses (Appendix B). After compilation of Workman et al. (2016). Map units: Qb: Quaternary basalt, Nv/sF: Pliocene sedi-
mentary and volcanic rocks, NsN: late Miocene (~12–7 Ma) sedimentary rocks, NvH: Middle Miocene (~16–12 Ma) volcanic rocks, NsO: Middle Miocene 
(~16–12 Ma) sedimentary rocks, PgNsT: Middle Eocene-Early Miocene (~40–19 Ma) sedimentary rocks, PPu: Pennsylvanian-Permian sedimentary rocks, OMu: 
Ordovician-Mississippian sedimentary rocks, Cbn: Cambrian Bonanza King and Nopah Formations, Cc: Cambrian Cararra Formation, ZCwsz: Neoproterozoic- 
Cambrian Wood Canyon, Stirling, and Zabriskie Formations, ZYp: Meso-Neoproterozoic Pahrump Group, Yc: Mesoproterozoic Crystal Springs Formation, Xmi: 
basement complex. Other abbreviations: AV: Amargosa Valley, BCD: Boundary Canyon detachment, BCTS: Bonnie-Claire thrust system, CBMF: Clery-Bat Mountain 
fault, FCFZ: Fall Canyon fault zone and other older faults, FT: Funeral thrust splay, GVT: Grapevine thrust, KWF: Keane Wonder fault, LCA: Lee’s Camp Anticline, 
MCF: Moonlight Canyon fault zone, OHD, Opera House detachment, PPFZ: Pyramid Peak fault zone RSR: Resting Spring Range, SPT: Schwaub Peak thrust, TCA: Titus 
Canyon Anticline. 
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Fig. 3. Snapshots of cross-section reconstructions. a) present-day structural cross section. The section line is shown in Fig. 2a (also see Fig. B.1 for detail). White 
circles are ZHe sample locations from Beyene (2011; a-p) and Giallorenzo et al. (2018; q-t). b) 8 Ma. c) 10 Ma. d) 12 Ma reconstruction showing all BCD heave 
restored. e) 16 Ma reconstruction showing all OHD and BCD slip restored. f) ca. 40 Ma reconstruction showing 40–16 Ma extension restored and the basal Cenozoic 
unconformity (topography line at top of section). g) Late Jurassic-Cretaceous reconstruction showing preferred thrust geometries and approximate burial depths of 
the FMCC (Appendix A for details). h) Permian reconstruction showing post-Permian thrusts within the model cross-section restored (the Last Chance thrust, some 
Permian pre-thrust folds, and eastern thrusts off the model cross section remain). Appendix B shows the 16–7 Ma interval in 1-Myr steps. 
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Fig. 3. (continued). 

Table 1 
Summary of kinematic data and supporting evidence for faults in the modeled cross-section.  

Structures Fault name (abbrev) Age Magnitude Sense Supporting details 

Normal 
faults 

Grapevine fault zone 
(GFZ) Pliocene-recent ~5 km T 

normal; down- 
W 

4 km deep basin in HW from gravity studiesa; cross-cuts Plioceneb; For 
7–0 Ma, modeled FW uplift and 0 and 1.5 km net erosion, linearly accrued 
(0–0.21 mm/yr) (see Fig. 3) 

Boundary Canyon 
detachment (BCD) Late Miocene 37.5 km H 

top NW; 
~312 + − 12 

syn-kinematic qtz- and calc-mylonitesc,d,e,f; cataclasites/breccia; foliated 
gouge; 2–3 km-thick ca. 11.45–7.4 Ma upper plate basin & tectonic mélangeg 

Pyramid Peak fault 
system (PPFS) 

Miocene 2.5 km H 
Oblique-normal; 
down-NW 

rock avalanche brecciag, cuts 40–16 Ma strata, fanning 16–7 Ma stratal dips 
in HWg; slip calculated from Paleozoic units and projected fault 

Clery-Bat Mountain 
fault (CBMF) 

Miocene 2.7 km H Normal down- 
NW 

reactivated thrusth, cuts 40–16 Ma strata, fanning 16–7 Ma stratal dips in 
HWg; slip calculated from Paleozoic units and projected fault 

Opera House 
detachment (OHD) 

Miocene 29.5 km H normal; down- 
NW 

fanning dips and ca. 16–7 Ma growth strata in upper plateg heave inferred 
from balanced section; 2–3 km-thick upper plate basin deposited at 
1000 ± 500 m elevationi (16–12 Ma)g 

Fall Canyon fault 
zone (FCFZ) Eocene-Miocene 2–2.5 km T 

oblique- normal; 
down-E 

Low-angle faults E and W-dippingj; mostly buttress unconformity with post- 
16 Ma volcanic rocksj; some oblique-slip and strike-slip reactivation with 
little separation of post-13 Ma rocksb; little to no topographic signature and 
appears internal to the Grapevine Mountains range blockb 

Moonlight Canyon 
fault zone (MCF) 

Eocene-Miocene 1.5–2.2 km T; 
0.5–1.6 km 

normal; down- 
E/W 

“older faults” in the 
Funeral M. 

Eocene-Miocene 0.5–1.5 km T; 
0.8–1.6 km 

normal-down E/ 
W 

Apparently cut by the BCDd, with no obvious continuation in the upper plate 

Thrusts 

**Wheeler Pass 
thrust (WPT) 

Late Jurassic- 
Cretaceous (?) 5.9 km ST ESE 

HW syncline; HW flat; FW syncline; Proterozoic on Pennsylvanian-Permiank; 
inferred beneath Amargosa Valley** 

Chicago Pass thrust 
(CPT) 

Cretaceous (?) ~5 km ST ESE HW ramp, FW syncline; Cambrian on Mississippianl 

Baxter-Shaw thrust Cretaceous (?) ~ 4 km ST ESE HW ramp-flat, FW syncline frontal imbrication of CPTl, m 

Clery thrust (CT) Late Jurassic- 
Cretaceous (?) 

2.5–3 km T ESE FW syncline and minor duplexh; Cambrian on Ordovician 

Schwaub Peak thrust 
(SPT) 

Late Jurassic- 
Cretaceous (?) 3.8 km ST ESE OT FW syncline and minor duplex; OT HW anticlined 

**Funeral thrust (FT) Late Jurassic 5–6 km T ESE 
OT bedding juxtaposed to flat bedding in ZCwszn; required for deep burial in 
N. Funeral Mtnso,p,** 

Bonnie-Claire Thrust 
System (BCTS) 

Cretaceous (?) 2.5–3 km ST WNW FW imbricated; Cambrian on Mississippian; repeated Ordovician sectionb 

Grapevine Thrust 
(GVT) 

Permian 2.5–5 km ST ENE Proterozoic on Mississippian; refolded twiceb 

H: heave; T: throw; ST: stratigraphic throw; HW: hanging wall; FW: footwall; OT: overturned. 
**see Appendix for more information. 
aBlakley et al. (1999). bNiemi (2012). cHoisch and Simpson (1993). dWright and Troxel (1993). eApplegate and Hodges (1995). fBeyene (2011). gFridrich et al. (2012). 
hCemen and Wright (1990). iLechler et al. (2013). jReynolds (1974). k Burchfiel et al. (1974). lBurchfiel et al. (1983). mPavlis et al. (2014). nWorkman et al. (2016). 
oCraddock-Affinati et al. (2020). pHoisch et al. (2014). 
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geometry (Groshong, 1994). Hanging-wall formation tops were then 
translated onto the underlying fault along simple shear planes dipping 
55◦ and spaced 50 m apart horizontally (Fig. 4c). This shear angle (55◦) 
is approximately the average orientation of antithetic normal faults 
above the OHD (Fridrich et al., 2012), and 55◦ is also convention if the 
shear angle is poorly constrained. This simple-shear, area-balance 
method creates anticlinal rollover above listric normal faults. 

Changing detachment fault dip during footwall unroofing was 
simulated by folding the detachment (in forward simulation; unfolding 
in reconstruction) to a series of target lines using vertical simple shear 
(Fig. 4d-f) (e.g. Wernicke and Axen, 1988). The target lines were hand- 
drafted and iteratively adjusted, honoring available constraints. Spe-
cifically, each of 5 BCD-slip reconstruction steps (37.5 km of heave in 
7.5 km increments) required iteratively defining a best-fit target line 
that 1) kept upper-plate paleoelevation within 1500–2500 m (Bahadori 
et al., 2018; Zhou and Liu, 2019) 2) maintained an upper-plate basin 
thickness of 0–2 km at 500–1500 m paleoelevation (e.g. Lechler et al., 
2013; Fridrich and Thompson, 2011), and 3) placed lower plate ZHe 

thermochronometric sample locations (Beyene, 2011) at reasonable 
paleo-depths. Multiple target lines were tested, and target lines were 
iteratively adjusted after forward thermo-kinematic modeling to find the 
best fit to the thermochronometric data (section 3.4). We use subvertical 
simple shear (e.g., Wernicke and Axen, 1988) to simulate incremental 
detachment footwall uplift, rather than flexural isostatic approaches 
(Buck, 1988; Long and Walker, 2015) that require very small effective 
elastic thicknesses (<2 km) to simulate footwall exhumation and cooling 
rates consistent with thermochronometry and tilt-reconstructions. 

3.3. Kinematic reconstructions and fault slip rates 

Using the above iterative method, a series of structural re-
constructions were made from present to Eocene (Fig. 3a-f). The re-
constructions were created by portioning heave values for individual 
faults into their time intervals of activity (Table 2). These re-
constructions form the basis of the iterative thermo-kinematic model 
time-steps (Fig. 3a-f & Appendix B), in which tracked horizons were 
converted to average interval velocities (Carrillo et al., 2016) (Figs. 5 & 
6). The Jurassic and Permo-Triassic reconstructions (Fig. 3f/g) were not 
thermo-kinematically modeled. 

3.4. Thermo-kinematic modeling 

The kinematic model is transformed into a thermo-kinematic model 
using FETKinPrep (Carrillo et al., 2016) and FETKin (Almendral et al., 
2015). FETKinPrep tracks formation tops between reconstruction time- 
steps and converts their displacements to motion vectors (Figs. 5-7). 
Whereas velocities for the upper 10 km of the numerical model domain 
are well-constrained by horizon-tracking between kinematic time-steps 
(Figs. 3 & 4), velocities in the middle part of the model domain are 
uncertain, and were therefore generated using three mid-crustal area- 
balancing schemes (Figs. 6 & 7). These are similar to those presented in 
Ketcham (1996), but linked directly to the kinematic-model-derived 
uplift (Carrillo et al., 2016) rather than an arbitrary, user-entered 
function. 

We tested three different methods for balancing mid-lower crustal 
uplift with prescribed upper crustal extension (Table 2). The first is a 
“uniform stretching” model for the middle crust (Fig. 6a/b), in which 
area balance is achieved by laterally homogeneous thinning of the 
middle crust to account for the extensional area (yellow in Fig. 6a) 
prescribed by kinematic reconstructions (grey arrows in Fig. 6b). Mid- 
crustal vectors (blue arrows in Fig. 6b) are then generated to simulate 
the evenly distributed thinning. In the second “stacked” scheme (Fig. 6c/ 
d), mid-crustal uplift and thinning vary laterally and are weighted in 
direct proportion to upper-crustal exhumation prescribed in kinematic 
reconstructions (Figs. 6c/d & 4d-f), producing a “stacked” pattern, in 
which mid-crustal uplift is concentrated beneath areas of upper crustal 
thinning. The stacked method simulates extreme necking of the crust 
beneath the uplifting detachment footwall. 

The third (and preferred) method is an inverse-weighted uplift 
scheme, where upper-crustal extension is balanced by thinning of the 
middle crust laterally away from areas of concentrated upper crustal 
exhumation (Ketcham, 1996) (Fig. 6e/f). In this method, the middle 
crust thins most in regions laterally removed from areas of concentrated 
upper crustal thinning, leaving the area beneath the MCC relatively 
thicker. This approach roughly simulates isostatic compensation by mid- 
to lower crustal flow and distributes basal uplift, consistent with little 
Moho depth variation across the model cross-section (Gilbert, 2012) 
(Fig. 7). 

Mid-crustal balancing is approximated by defining advection vectors 
within a region bounded by two depths at the beginning of a time step 
that maintain area balance of that layer through the end of the step, 
compensating for lengthening by thinning. We call the upper boundary 
the compensation depth, as its uplift is a direct function of overlying 
thinning or thickening, and the lower boundary is called the upwelling 

Fig. 4. Inclined, simple-shear, area-balancing method for reconstructing and 
forward modeling fault displacements, simulating uplift of the detachments, 
and tracking a “samples” horizon (yellow line) between time-steps. a) initial 
fault geometry, showing hanging wall and footwall, magnitude of first incre-
ment of heave, and thermochronometer sample sites (white circles). b) Heave is 
applied to rigid upper plate and extensional area is calculated based on heave 
magnitude and fault geometry (e.g. Groshong, 1994). c) Upper plate horizons 
are translated onto the fault plane using simple shear (55◦ antithetic shear 
angle). d) A target line is created to simulate the uplifting footwall. Target 
surfaces were generated such that paleo-elevation and syn-extensional basin 
thicknesses both honor geological constraints and approximate thermochron-
ometer depths. e) The initial fault and surrounding horizons are translated 
vertically onto the target line (new detachment). f) The next increment of heave 
is applied, and steps a-e are repeated. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 
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depth. Below the upwelling depth, the crust is assumed to spread or flow 
uniformly. We tested various upwelling and compensation depths for 
the mid-crustal area balance (Table 3). In preferred tests, we used up-
welling and compensation depths of 20 km and 10 km, respectively 
(Fig. 7) in order to control the heat advection associated with mid- 
crustal uplift, which was too high in tests with deeper upwelling 
(Table 3). The shallow compensation depth yielded the best fits to 
multiple validity criteria, which are detailed below. We note that the 
compensation depth is not the same as isostatic compensation depth 
referred to in flexural or local isostasy studies, but instead the upper 
boundary of the mid-crustal area that is being balanced. 

Once the velocity field is defined by horizon tracking and mid-crustal 
area balance, FETKin then solves the heat flow equation on a 2D 
Lagrangian finite-element grid: 

ρc
[
(δT/δt) − vx (δT/δx) − vy (δT/δy)

]

= (δ/δx)k(δT/δx)+ (δ/δy)k(δT/δy)+ ρH  

where ⍴ is rock density (kg m− 3), c is heat capacity (J kg− 1 K− 1), T is 
temperature (K), t is time (s). vx and vy are the horizontal and vertical 
components of the velocity field, respectively, k is thermal conductivity 
(W m− 1 K− 1), and H is heat generation (W m− 3). 

Our numerical model domain is 160 km horizontally by 30 km 
vertically (Fig. 5) with prescribed upper (Earth surface) and lower 
boundary conditions. The upper boundary conditions are given by 

Almendral et al. (2015): 

T [t, x, y = S(x) ] = Ts(y) = TMSL + β [y − ymax]

where S(x) is the topography line prescribed by the kinematic re-
constructions, TMSL is temperature at mean sea level (24 ◦C), TS(y) is the 
top surface temperature, β is the lapse rate (− 5 ◦C/km), and ymax is the 
mean sea level. 

Heat flux is zero at the right- and left-hand sides of the model 
domain: 

[δT/δx] = 0 

We tested two different types of basal thermal boundary conditions: 
constant basal temperature (Tbasal = 800 ◦C), or constant basal thermal 
gradient ([δT/δz]basal = 20–30 ◦C/km). 

T [x, y = ymin] = Tbasal  

[δT/δz]basal = 20 − 30◦C km− 1  

where ymin is the model’s base level. The constant basal gradient con-
dition allows temperature to change in response to processes affecting 
heat flow within the grid (e.g. exhumation of deep/hot rocks, lateral 
topographic gradients). The initial condition is calculated as the steady 
state temperature distribution based on the boundary conditions used. 

Our preferred thermal properties were adapted from measurements 
made on the regional Mojave Province basement complex (unit Xmi). 
These are thermal conductivity, k = 2.51 W m− 1 K− 1; density, 
⍴ = 2800 kg m− 3; heat capacity, c = 1100 J kg− 1 K− 1; and heat produc-
tion, H = 0.4–1.4 μW m− 3 (Sass et al., 2008), fairly consistent with 
global average values of granitic gneiss and amphibolite gneiss (Pinet 
and Jaupart, 1987; Eppelbaum et al., 2014; Jaupart et al., 2016). Model 
sensitivity to varying material thermal properties (k, ⍴, c, H) was tested 
(Table 3 & Appendix D). Modern heat flow (75–90 mW m− 2; Blackwell 
et al., 2011) and late Miocene shallow geothermal gradients 
(~25–35 ◦C/km) fit better with lower heat production tests 
(0.4 μW m− 3) (Table 3). 

Model cooling histories and cooling ages are generated in FETKin by 
tracking the temperature-time history of a “samples horizon” (Figs. 4 & 
5), which connects the locations of actual ZHe samples from the BCD 
footwall (Beyene, 2011; Figs. 2b & 3a). Model sample cooling ages are 
then calculated using standard diffusion kinetics for the ZHe system 
(Reiners, 2005). Model cooling ages were compared to actual cooling 
ages from Beyene (2011) (Figs. 2b & 3), and the geometric initial con-
dition and kinematic-thermal modeling were repeated until model 
cooling ages matched the actual data. 

3.5. Validity of thermal model solutions 

The validity of thermo-kinematic models was evaluated through 
parameter testing (Table 3 & Appendix D) and comparison of temper-
ature solutions to interpolated heat flow, nearby measured heat flow, 
regional pre- and post-extensional geothermal gradient, and Moho 
temperature benchmarks. We determined that acceptable models should 
1) predict 0 Ma surface heat flow ranging from 75 to 90 mWm− 2, with 
slightly higher values to the northwest (Blackwell et al., 2011), 2) yield 
pre- and post-extensional geothermal gradients of 15–31 ◦C/km and 
25–40 ◦C/km, respectively, consistent with tilting reconstructions and 
HeFTy models from nearby normal fault footwalls (Holm et al., 1992; 
Stockli et al., 2003; Fitzgerald et al., 2009; Blackwell et al., 2011; Bidgoli 
et al., 2015a/b), 3) predict present-day temperatures of 800–850 ◦C at 
30 ± 7 km depth (Gilbert, 2012; Schutt et al., 2018), and 4) match the 
BCD footwall cooling history as recorded by thermochronological sam-
ples (Holm and Dokka, 1991; Hoisch and Simpson, 1993; Beyene, 2011). 

We target 0 Ma basal model temperatures of 800–900 ◦C 
(~24–31 km depth), based on Moho temperature estimated from mantle 
P-wave velocities (800–850 ± 50 ◦C at depth of 30 ± 7 km) (Gilbert, 

Fig. 5. FETKin finite-element schematic setup showing model domain, grid 
size, velocity vectors, and boundary conditions. The samples horizon (dashed 
black line with white dots) is uplifted and eventually brought to the surface in 
forward models. Stepwise reconstructions of Fig. 3 define the upper crustal 
velocity field (grey arrows), which is broken into x- and y- components to 
calculate advective heat transport. Mid-lower crustal vectors (blue arrows) are 
generated from the area-balancing scheme shown in Fig. 6. See text for dis-
cussion. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Table 2 
Kinematic inputs for stepwise fault reconstructions and forward models.  

Fault Interval (Ma) Heave (km) Rate (mm/yr) 

Moonlight Canyon fault zone 40–16 4.0 0.2 
Fall Canyon fault zone1 40–16 4.0 0.2 
Fall Canyon fault zone2 40–16 4.0 0.2 
subtotal 40–16 12.0 0.5 
OHD1 16–7 22.6 2.5 
OHD2 16–7 6.9 0.8 
CBMF 16–7 2.7 0.3 
PPFS 16–7 2.5 0.3 
Subtotal 16–12 15.4 3.9 
Subtotal 16–7 34.7 3.9 
BCD 12–7 37.5 7.5 
Total 40–7 84.2 2.6 
Total 16–7 72.2 8.0 
Total 12–7 56.8 11.4 

Supporting details for intervals and magnitudes in text and Table 1. 
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2012; Schutt et al., 2018). Models run with constant basal temperature 
of 800 ◦C honor this condition well (e.g. ZHe_800 g; Table 3; Figs. 7 & 8). 
Models run with a basal gradient of 22.5 ◦C/km predict reasonable 0 Ma 
basal temperatures, depending on area-balancing scheme (Table 3 & 
Fig. 7). We prefer the inverse area balance method, which minimizes 
heat advection beneath the detachment footwall, because it yields 
smoother 0 Ma basal temperatures that are consistent with Schutt et al. 
(2018) and less implied upwelling of the Moho beneath the MCC (Ket-
cham, 1996) (Figs. 7 & 8). Of the constant basal gradient tests, the in-
verse configuration (Fig. 6e/f) yielded the most reasonable basal 
temperatures while honoring other validity criteria. Models run with 
basal gradients >22.5 ◦C/km or those using the stacked method (Figs. 7 
& 8) yield modern (0 Ma) basal temperatures up to 1100–1300 ◦C 
(Table 3), which are too hot (Schutt et al., 2018). 

The statistical similarity between modeled (this study) and actual 
(Beyene, 2011) sample cooling ages was calculated by a residual sum of 
squares (RSS) (Table 3). First, both modeled and actual (Beyene, 2011) 
cooling ages from the BCD footwall were plotted by x-distance along the 
modeled cross section (in the BCD footwall; Fig. 9). Best-fit 3rd order 
polynomials were fit to the cooling age vs. x-distance data (see Appendix 
D & section 4.2). For each parameter test, the RSS was then calculated by 
squaring the difference between modeled and actual (Beyene, 2011) 
cooling ages for every x-location. The closer RSS is to zero, the more 
similar the model is to the Beyene (2011) data. Plots of cooling age vs. 
distance along the BCD footwall for all parameter tests can be found in 
Appendix D. 

4. Thermo-kinematic model results 

Our preferred, best-fit thermo-kinematic models are 1) ZHe_-
grad22.5 h and 2) ZHe_800 g (Fig. 9 & Table 3). Of all parameter tests, 
model ZHe_grad22.5 h produces the best fit to the BCD footwall ZHe 
cooling ages (Beyene, 2011) while satisfying other conditions described 
above, with some caveats. The ZHe_grad22.5 h test yielded a pre- 
detachment geotherm (16 Ma) of 24–26 ◦C/km, a post-extensional 
(0 Ma) shallow geotherm of 31–40 ◦C/km, and a 0 Ma basal tempera-
ture of 900–1000 ◦C (Fig. 7 & Table 3). The high near-surface geotherm 
in the northwestern part of the model (northwestern Funeral Mountains 
and Grapevine Mountains) is reconciled with 75–90 mWm− 2 surface 
heat flow by treating the surface as low-conductivity (~2.0 W m− 1 K− 1), 
due to the predominance of carbonate outcrops there (Fridrich et al., 
2012). This low thermal conductivity, however, would not properly 
treat the entire 160 × 30 km model domain, for which we used 
2.5 W m− 1 K− 1 in preferred models, consistent with both measured and 
average values for the granitic basement. While the 0 Ma-predicted basal 
(30 km depth) temperature is slightly higher than that estimated from 
mantle P-waves (Schutt et al., 2018), the ±7 km uncertainty in crustal 
thickness estimates (Gilbert, 2012) permits that the Moho could be as 
shallow as 23 km, where ZHe_grad22.5 h predicts temperatures of 
800◦ ± 50 ◦C consistent with Schutt et al. (2018). The Moho temperature 
(Schutt et al., 2018) and/or crustal thickness (Gilbert, 2012) models 
may not capture local variations in modern heat-flow along the model 
transect (Blackwell et al., 2011). Models ZHe_grad22.5e & ZHe_-
grad22.5i yield very good fits to the cooling ages and other validity 
criteria (Table 3), however they are less-preferred than ZHe_grad22.5 h 
due to the basal temperature criteria (Figs. 7 & 8). 

Snapshots of our most-preferred model (ZHe_grad22.5 h) (Fig. 10) 
show the thermal evolution during progressive extension. Here, the 
temperature-time-depth evolution of modeled and actual samples from 
the BCD footwall can be visualized. The modeled cooling history of 
samples for ZHe_grad22.5 h is shown in Fig. 11. 

4.1. Model cooling rates 

In our forward models of exhumation, the BCD footwall undergoes a 
multi-stage non-linear cooling history (Fig. 11). Maximum model 

Fig. 6. 2D cross-sections of the model grid showing the three separate area- 
balancing schemes used to model mid-crustal velocities (blue arrows): uni-
form (a-b), stacked (c-d), and inverse (e-f). Extensional area (A) is calculated 
from the mid-crustal component of extension, below where the upper crust is 
balanced by the kinematic model (grey arrows from reconstruction). This 
extensional area (A) is balanced by basal uplift from a prescribed depth of 
upwelling (e.g. 20–30 km; Table 3). The laterally-varying magnitude of mid- 
crustal uplift needed to compensate the extensional area (A) depends on the 
balancing method used. See text for more discussion. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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Fig. 7. Snapshots of thermo-kinematic model solutions for models ZHe_grad22.5e (a-d) and ZHe_grad22.5 h (e-h), showing the evolution of temperature with 
advection using the stacked (a-d) vs inverse (e-h) mid-crustal area balancing scheme. The BCD and OHD are shown by solid white lines. Yellow and black arrows are 
incremental velocities for the upper and lower crust, respectively. Note maximum heat advection at 7 Ma (c and g), after which conductive cooling lowers the 
geotherm (d and h). Depth to the 850 ◦C isotherm is shown. See text for discussion of Moho depths and temperatures. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Table 3 
Thermo-kinematic model parameter tests with best-fit model runs emboldened; see Fig. D.1 for plots of sensitivity tests.  

Test 
Name 

Balance 
scheme 

UD CD Basal Boundary 
Condition 

Thermal properties 40 Ma 16 Ma 0 Ma predicted model conditions RSS of model ages 

k ⍴ c H total 
Q 

dT/dz dT/dz surface 
Q 

Basal_T 40–0 Ma 12–0 Ma 

grad20f Inverse 20 10 20 ◦C/km 2.4 2700 1100 0.4 60–61 22–24 29–37 62–89 820–910 529.9 67.1

grad20g Stacked 20 10 20 ◦C/km 2.4 2700 1100 0.4 60–61 22–24 25–41 60–98 720–980 514.4 66.8

grad20h Uniform 20 10 20 ◦C/km 2.4 2700 1100 0.4 60–61 21–24 28–38 67–91 790–930 518.3 65.9

grad20i Inverse 30 15 20 ◦C/km 2.4 2700 1100 0.4 60–61 22–24 25–45 60–108 725–1090 464.6 59.5

grad20j Stacked 30 10 20 ◦C/km 2.4 2700 1100 0.4 60–61 22–24 25–47 60–113 725–1130 414.0 53.3

grad20k Stacked 20 10 20 ◦C/km 2.4 2700 1100 0.4 60–61 22–24 25–42 60–101 725–1000 484.3 62.4

gad20m Stacked 20 10 20 ◦C/km 2.5 2700 1100 1.0 80–83 25–28 32–51 80–128 830–1140 503.5 30.0

grad22.5c Uniform 30 15 22.5 ◦C/km 2.0 2700 1100 1.0 75–78 29–33 37–65 74–130 960–1470 1377.2 76.3

grad22.5d Uniform 30 15 22.5 ◦C/km 2.5 2700 1100 0.4 60.26 24–26 28–49 70–123 800–1200 6.4 3.3

grad22.5e Stacked 20 10 22.5 ◦C/km 2.5 2700 1100 0.4 69–72 24–26 27–45 68–113 800–1080 12.1 9.6

grad22.5f Stacked 20 10 22.5 ◦C/km 2.5 2700 1100 0.0 56.25 22–24 23–39 58–98 725–980 2867.7 383

grad22.5 g Stacked 20 10 22.5 ◦C/km 3.0 2700 1100 0.4 80–83 24–26 27–42 81–126 780–1030 102.7 16.8

grad22.5 h Inverse 20 10 22.5 ◦C/km 2.5 2700 1100 0.4 69–72 24–26 31–40 78–100 900–1000 11.9 3.9

grad22.5i Uniform 20 10 22.5 ◦C/km 2.5 2700 1100 0.4 69–72 24–26 30–42 75–105 870–1020 11.0 3.8

grad25e Stacked 20 10 25 ◦C/km 2.4 2700 1100 0.4 72–75 27–29 30–51 72–122 880–1220 206.4 11.6

grad25f Stacked 20 10 25 ◦C/km 2.5 2700 1100 0.4 75–78 27–29 30–49 75–122 880–1190 161.2 8.6

800c Stacked 30 10 800 ◦C 2.4 2700 1100 1.0 87–90 24–26 30–40 72–96 800 119.3 7.0

800d Stacked 30 10 800 ◦C 2.0 2700 1100 1.0 78–81 24–26 31–42 62–84 800 291.3 17.7

800e Stacked 20 10 800 ◦C 2.5 2700 1100 0.4 72–75 24–26 27–35 68–87.5 800 198.3 34.0

800g Stacked 20 10 800 ◦C 2.5 2700 1100 1.0 >90 24–26 30–39 75–98 800 86.5 5.4

All temperatures in ◦C; UD: upwelling depth (km), CD: compensation depth (km), Q: heat flow (mW m− 2), dT/dz.: geotherm (◦C/km), RSS: residual sum of squares 
similarity test, k: thermal conductivity (W m− 1 K− 1), ⍴: density (kg m− 3), c: specific heat capacity (J kg− 1 K− 1), H: radiogenic heat production (μW m− 3). 
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cooling rates for the BCD footwall were recorded from ca. 11–7 Ma 
(~35–62 ◦C/Myr), averaging ~42 ◦C/Myr for sites subjacent to the 
detachment, consistent with cooling rate of 41 ◦C/Myr estimated by 
Holm and Dokka (1991). From 7 to 0 Ma, BCD footwall samples were 
cooled at laterally-varying rates of 15 ◦C/Myr (in the northwest) to 1 ◦C/ 
Myr (in the southeast). From 40 to 16 Ma, some samples were heated 
(~2.5 ◦C/Myr) then cooled (~1.5 ◦C/Myr), while others were mono-
tonically cooled (~1.5 ◦C/Myr), depending on location (Fig. 11). Sam-
ples in the hanging walls of the ca. 40–16 Ma faults (compare Fig. 10a & 
b), corresponding to samples h-k of Beyene (2011) are among those that 
experienced model heating due to burial under 40–16 Ma strata (Figs. 3 
& 10a/b), yet they remained hotter than 220 ◦C and thus were fully open 
to He-loss during that interval (Fig. 11). Most samples from the south-
eastern part of the BCD footwall (dark blue in Figs. 9-11) remained in the 
ZHe partial retention zone (140–200 ◦C; Wolfe and Stockli, 2010) for the 
duration of the model run, and thus were partially-reset from the pre-
scribed 85 Ma inherited age. Modeled samples northwest of sample “m” 
(Beyene, 2011) (36.2 ± 1.6 Ma) (red to light blue in Figs. 9-11) begin the 
forward model run at temperatures >220 ◦C, and thus they have zero 
age at model initiation, and the 85 Ma prescribed inherited age thus does 
not apply to them. Post-40 Ma model cooling ages are insensitive to the 
prescribed inherited age (see Fig. C.1). 

4.2. Model cooling ages 

For our preferred simulation ZHe_grad22.5 h, modeled cooling ages 
matched measured ages of Beyene (2011) very well (Fig. 9; RSS =11.9), 
and other validity criteria were met (Table 3). Most (~95%; 19/20) 
parameter tests presented in replicate measured sample cooling ages 
<12 Ma remarkably well (RSS < 80) (Table 3 & Appendix D), suggesting 
that syn-kinematic low-temperature cooling histories for detachment 
footwalls (e.g. fission track and (U-Th)/He) are much more sensitive to 
fault-controlled exhumation rates than to thermal boundary conditions 
or heat advection with footwall exhumation. This is illustrated in the 
RSS calculated using just a subset of samples cooled during or after BCD 
slip (post-12 Ma; x = 47–61 km in Fig. 9 & see Table 3). For parameter 
tests other than our preferred models, the full set of modeled samples 

corresponding the Beyene (2011) sample sites have relatively poor fits 
(RSS > 150) to measured ZHe cooling ages (x = 46–77 km in Fig. 9). 
However, these tests yield good fits (RSS < 70) if pre-BCD cooling ages 
are excluded (such that x = 47–61 km in Fig. 9). This supports that, in 
areas with comparable pre-extensional geothermal gradients 
(25 ± 5 ◦C), ZHe ages from detachment footwalls should record faith-
fully the initiation of faulting (e.g. Stockli, 2005), though independent 
constraints on geological, kinematic, and thermal model inputs (and 
outputs) will increase the uniqueness of thermo-kinematic models (see 
Fox and Carter, 2020). Of the 20 model runs presented (Table 3), 
ZHe_grad22.5f is the only one that did not yield low RSS for the 12–0 Ma 
subset. This test differed from the very well-fit ZHe_grad22.5e 
(RSS = 12.1), only in its lack of heat production (Table 3). Thus, some 
heat production in the crust (0.4–1.0 mWm− 2) appears to be a 
requirement for matching the cooling ages and other model constraints. 

Eocene-Oligocene muscovite 40Ar/39Ar cooling ages (~30–40 Ma; 
Beyene, 2011) from the northwestern BCD footwall (Figs. 2b & 9) are 
compatible with tracked cooling histories in our thermo-kinematic 
models. When projected to the model cross-section and numerical 
grid, ca. 30 Ma and 35 Ma muscovite 40Ar/39Ar samples (Fig. 2b) 
(pseudo-plateau & total gas ages of Beyene, 2011) lie in the range 
x = 49–50 km (Fig. 9). Modeled samples from this location (and com-
parable, structurally-deeper ones farther northwest) cool through 
350–425 ◦C, which is near the closure temperature for 40Ar in muscovite 
considering low cooling rates modeled (1–1.5 ◦C/Myr; Fig. 11) and grain 
size (100–350 μm; Beyene, 2011) (Harrison et al., 2009), between 29 
and 40 Ma (Figs. 10a & 11). The cooling paths of northwestern-most 
modeled samples associated with the Eocene-Oligocene muscovite 
40Ar/39Ar cooling ages (Beyene, 2011) thus support the validity of the 
thermo-kinematic model. 

Model cooling histories for the BCD footwall also are compatible 
with the projected locations of pre-40 Ma muscovite 40Ar/39Ar cooling 
ages (Beyene, 2011). Southeast of sample “g” (Beyene, 2011 sample: 
07FM38) in the BCD footwall, muscovite 40Ar/39Ar cooling ages are 
consistently older than 75 Ma (see Beyene, 2011). Our preferred thermo- 
kinematic models all predict that footwall locations southeast of sample 
location “g” (Beyene, 2011 sample 07FM38; Table 4) remained at 
temperatures <350 ◦C for the duration of the run (light red to yellow and 
blue in Figs. 10 & 11), thus honoring these muscovite 40Ar/39Ar cooling 
ages. 

5. Discussion 

Our thermo-kinematic models produce validated stepwise re-
constructions, constraining the evolution of both fault geometry and 
surrounding crustal thermal state (Figs. 7, 10, & 12). Along with other 
existing constraints (e.g. mid-crustal BCD-root zone, crustal thickness 
reconstructions), these inform models of 1) crustal structure associated 
with low-angle normal faulting (section 5.1), 2) the extent and longevity 
of a weak decoupling layer in the middle crust beneath the detachment 
fault system (section 5.2), 3) rheological feedbacks associated with 
thinning, cooling, and partial embrittlement of the weak layer (section 
5.3), 4) mechanical development of the BCD (section 5.4), and 5) rarely 
observed high-magnitude seismicity on low-angle normal faults (section 
5.5). 

5.1. Crustal-scale structure of the BCD 

The BCD initially (12 Ma) dipped 9–34◦ in the upper crust 
(average ~ 29◦), and was rooted into a gently (<15◦) dipping plastic 
shear zone through the brittle-plastic transition (BPT) from ~8–12 km 
depth. Related shear at greater depth probably was delocalized, and was 
certainly delocalized below 15 km depth (Figs. 12 & 13). Overall, this is 
consistent with models in which upper and lower crustal deformation 
are decoupled along detachments (Spencer, 1984; Davis and Lister, 
1988; Wernicke and Axen, 1988; Singleton and Mosher, 2012; Platt 

Fig. 8. Plots of 0 Ma modeled-predicted shallow geotherm (upper 2 km) and 
basal temperatures (30 km depth). Note the higher basal temperatures and 
geothermal gradients associated with the exhumed BCD footwall 
(x = 20–60 km). Rock and isotherm uplift are concentrated beneath exhumed 
detachment footwalls in the stacked scheme, yielding localized isotherm 
compression, whereas the inverse method distributes mid-crustal uplift more 
broadly, leading to less lateral basal temperature variation and less increase of 
the geothermal gradient beneath the Funeral Mountains. 
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et al., 2015; Deng et al., 2020), provided that a weak crustal layer exists 
(e.g. Clerc et al., 2015; Brun et al., 2018; Jolivet et al., 2018), but 
inconsistent with models in which detachments and their root shear 
zones transect the entire crust or lithosphere (Wernicke, 1985; Lister 
et al., 1986, 1991). 

Kinematic reconstruction of ductile fabrics and microstructures 
subjacent to the BCD support the dip ranges presented above. Mica fish, 
stretching lineations, and mesoscopic folds in both quartz- and calc- 
mylonites that are linked kinematically to the BCD presently show 
mostly top-NW shear along a mean vector plunging 12◦ toward 120◦

(Hoisch and Simpson, 1993) (see 1b in Fig. 12). Some shallowly NW- 
plunging (toward ~290◦) stretching lineations in calc-mylonite also 
are reported by Hoisch and Simpson, 1993 and Beyene, 2011). Recon-
struction of ~25◦ of late Miocene SE-tilting of the Funeral Mountains 
MCC (see Figs. 3, 10, & 12) rotates the mean shear direction (12◦/120◦; 
Hoisch and Simpson, 1993) to ~13◦/300◦ (in the plane of our section) 
(1a in Fig. 12), suggesting that the shear zone initially dipped 13◦ NW. 
This is consistent with our kinematic reconstruction, which shows a 14◦

dip in the BCD root zone. 
Structurally deeper, high-temperature mylonites (400–500 ◦C), 

which may have been linked to the BCD, support that the BCD-related 
shear was delocalized and distributed below 12–15 km depth (see lo-
cations 2a & 2b in Fig. 12), depending on time-step. Some quartz grains 
in quartzite mylonites and mylonitic shear bands in schist were 
deformed by dynamic recrystallization mechanisms as high temperature 
as grain boundary migration (GBM) (Lima et al., 2018). This deforma-
tion mechanism, and prism <a > slip revealed in EBSD patterns of the 
top-NW mylonites (Sauer et al., 2013), support shearing during high 
temperature, low-stress conditions, in which the yield strength of 

quartz-rich rocks is very low (<10–20 MPa) over a range of strain rates 
(10− 12-10− 15 s− 1) (Hirth et al., 2001; Stipp et al., 2002; Behr and Platt, 
2011; Cooper et al., 2017; Tokle et al., 2019; Hughes et al., 2019). Platt 
and Behr (2011) inferred that a weak middle crust would produce 
distributed shear beneath the mylonite zone formed in the cooler, 
shallower BPT. Their model for shear zone thickness with depth predicts 
2–6 km-thick zones of distributed shear (Fig. 12) in the quartz-rich 
middle crust, though the upper end of this range may be higher with 
thicker and hotter middle crust (Fig. 12). Deeper, in the mantle litho-
sphere, the distributed shear zones may be as wide as 50 km, depending 
on rheology and the presence of a gabbroic lower crust (Freed et al., 
2007; Gueydan et al., 2014). 

Below the localized-distributed transition (LDT: Cooper et al., 2010, 
2017), strain in quartz-rich rocks is distributed by high-T, low-stress 
dynamic quartz recrystallization. We use the 500 ◦C model isotherm 
(Fig. 12) to mark the LDT, which apparently was advected upward 
>6 km during footwall exhumation (in ZHe_grad22.5 h; greater in 
ZHe_22.5e) (it remains slightly deeper along the model boundaries). If 
detachments sole into the LDT (e.g., Cooper et al., 2017), then upper 
crustal extension most likely was decoupled from that in the lower crust 
and mantle lithosphere, and the depth of decoupling would have 
decreased with time as the LDT was advected (similar to downward- 
migrating BPT through nappe folds in Brun et al., 2018). 

5.2. Mid-crustal flow 

Our preferred thermo-kinematic models predict very high tempera-
tures in the mid-lower crust prior to and during detachment faulting, 
consistent with a weak and partially-molten middle crust (Fig. 13). We 

Fig. 9. FetKin-calculated (modeled) and actual (Beyene, 2011) BCD footwall ZHe cooling ages vs distance southeast along the model cross section. The cross section 
is an enlarged view centered on the Funeral Mountains MCC from Fig. 3a (0 Ma). The black dashed curve is a polynomial fit to actual ZHe ages (Beyene, 2011). The 
red-yellow-blue colour ramp curve is a polynomial fit to our preferred model test, ZHe_grad22.5 h. Modeled sample positions are shown on the cross-section with the 
symbol colour corresponding to the colour ramp polynomial (top), the sample positions Fig. 10, and the cooling history curves in Fig. 11. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 10. Snapshots of our preferred forward thermo-kinematic model (ZHe_grad22.5 h; inverse balancing method) showing isotherm evolution and sample positions 
with detachment slip and footwall exhumation. a) Initial condition at 40 Ma. b) 16 Ma. c) 12 Ma. d) 10 Ma. e) 7 Ma. Key notes on each reconstruction sequence are 
detailed in the margin and the text. Abbreviations are the same as Fig. 2. 
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infer that, initially, this weak middle crust decoupled upper crustal 
deformation from that in both the lower crust and mantle lithosphere (e. 
g. Wernicke, 1992; Lavier and Manatschal, 2006; Gueydan et al., 2008; 
Huismans and Beaumont, 2011; Brune et al., 2017) during detachment 
faulting from ca. 16–7 Ma, but was subsequently cooled (mostly below 
600 ◦C) to promote post-7 Ma coupling of the crust to the mantle litho-
sphere (Wernicke, 1992; Harry et al., 1993; Péron-Pinvidic et al., 2013). 
Specifically, model temperatures are >600 ◦C at depths of 12–20 km 
during extension (16–7 Ma). Under these conditions, partially-molten 
quartz-rich crust could flow at very low shear stress (10–20 MPa) 
under lateral pressure gradients caused by focused upper crustal thin-
ning (Fig. 13) and/or by lateral topographic gradients (Block and Roy-
den, 1990; Kruse et al., 1991; Wdowinski and Axen, 1992; Beaumont 
et al., 2001; Rey et al., 2001; Grujic, 2006; Rey et al., 2009a/b; Whitney 
et al., 2013; Platt et al., 2015). 

We estimate the thickness and longevity of the decoupling, weak 
layer (Fig. 13) using our stepwise thermo-kinematic models, crustal 
thickness reconstructions (Bahadori et al., 2018), gravity/tomographic 
studies (Hussein et al., 2011; Lee et al., 2014), and a crude area-balanced 
crustal section. Mid-Miocene crustal thickness along our transect was 
probably 50–60 km (Bahadori et al., 2018). Both gravity and tomo-
graphic models (Hussein et al., 2011; Lee et al., 2014) suggest 
~10–15 km of gabbroic lower crust is present regionally beneath the 
Death Valley area (Fig. 13b), plus an additional 1–5 km of underplated 
basalt locally (identified beneath Death Valley). Based on our kinematic 
reconstructions and thermal models, then, the middle Miocene 
(~16 Ma) weak layer occupied the depth range between ~22 ± 3 km 
depth (600 ◦C isotherm) and ~ 40 ± 5 km depth (top of mafic lower 
crust) (Fig. 13a). 

Thus, the weak mid-crustal layer was 10–26 km thick (Fig. 13). In the 
deeper parts of the weak layer (possibly at 30–45 km depth from 16 to 
10 Ma), where temperatures were likely >800 ◦C, micaceous quartz-rich 
crust would be partially molten and highly fluid (Grujic, 2006), with 
effective viscosity ~1019 Pa s, while gabbroic lower crust may retain 
strength, with effective viscosity 1020–1021 Pa s, assuming a strain rate 
of 10− 14 s− 1 (Bürgmann and Dresen, 2008; Schutt et al., 2018). A fairly 
high pre- to syn-extensional crustal geothermal gradient (22–35◦/km) 

Fig. 11. Temperature-time evolution of modeled samples showing cooling and 
heating through time for different parts of the BCD footwall. Measured samples 
(white circles) (Beyene, 2011) are plotted along their respective cooling paths 
(colored curves) based on reconstructed locations (Figs. 3 & 9). Analytical age 
uncertainties for the measured samples (Beyene, 2011) are shown by grey lines 
parallel to the associated modeled cooling paths. Note that all measured sample 
ages plot on their respective model cooling paths, in temperature space, within 
uncertainty of the 140–200 ◦C ZHe partial retention zone (Wolfe and Stockli, 
2010; Cai et al., 2020). Rapidly cooled samples (NW) generally record higher 
closure temperatures than slowly cooled samples. 

Table 4 
Zircon (U-Th)/He ages and model cooling ages for best-fit tests  

Sample ID Age Sample name 
(this study) 

associated model cooling ages 
(by model suffix) 

800g grad22.5h grad22.5e 

09FM15 8.9 ± 0.7 a 7.67 7.74 7.67 
09FM8 9.0 ± 0.7 b 8.07 8.11 8.09 
09FM9 7.4 ± 0.5 c 8.33 8.34 8.35 
07FM43 8.5 ± 0.7 d 8.33 8.56 8.35 
09FM10 7.8 ± 0.6 e 8.33 8.65 8.35 
07FM8 8.2 ± 0.7 f 8.57 8.54 8.64 
07FM38 8.3 ± 0.7 g 8.86 8.87 8.81 
07FM13 8.5 ± 0.7 h 9.57 9.54 9.66 
07FM15 10.9 ± 0.9 i 9.58 9.56 9.67 
07FM10 9.0 ± 0.7 j 9.80 9.69 9.83 
07FM34 9.3 ± 0.7 k 11.50 12.47 12.63 
07FM29 16.2 ± 1.6 l 16.50 17.99 17.93 
07FM27 36.2 ± 1.6 m 27.80 18.78 30.72 
07FM26 63.5 ± 5.6 n 48.60 30.89 61.57 
07FM24 52.7 ± 4.7 o 74.80 60.62 71.92 
07FM21 84.6 ± 6.8 p 74.80 78.26 81.2 
RS-2 128.5 ± 7.9 q nc nc nc 
RS-1 140.8 ± 13.2 r nc nc nc 
RS-3 147.1 ± 8.2 s nc nc nc 
RS-4 156.3 ± 7.8 t nc nc nc 

nc: not calculated 
09FM & 07FM are from Beyene (2011) 
RS- are from Giallorenzo et al. (2018) 
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and a partially-molten, micaceous, quartz-rich middle crust are both 
consistent with major silicic volcanism in the region that immediately 
pre-dated and coincided with large- magnitude extension. Examples 
include the 16–11 Ma southwest Nevada Volcanic Field (Sawyer et al., 
1994), 14–12 Ma Owlshead Volcanic Field: (Andrew and Walker, 2009; 
Luckow et al., 2005), and the ~11–9 Ma Shoshone Volcanics/Black 
Mountains Intrusive Suite (Holm, 1995; Calzia et al., 2016). 

The modeled thickness inferred for the weak mid-crustal layer sup-
ports a shallow isostatic compensation depth for heterogeneous upper 
crustal thinning (10–15 km), which is most consistent with the inversely 
weighted mid-crustal balancing scheme (Figs. 6, 7 & Table 3). With a 
10–26 km-thick weak layer, previous workers suggested flow could be 
channelized over length-scales of 100–250 km (e.g. Block and Royden, 
1990; Kruse et al., 1991; McKenzie et al., 2000), smoothing out lateral 
variations in upper crustal thinning over 1–2 Myr. We interpret this 
compensation as laterally-variable necking in the low-viscosity mid- 
crustal layer (general shear; Fig. 13b). 

5.3. Thinning and cooling the weak layer: Implications for 4D rift 
evolution 

As the middle crust was thinned, cooled, and partly embrittled 
beneath detachments, rocks migrated upward through mid-crustal 
rheological transitions (e.g., Cooper et al., 2010; Platt et al., 2015; 
Cooper et al., 2017; Brun et al., 2018) until the weak layer was effec-
tively removed. This process is similar to “occlusion” (Wernicke, 1992) 

or “annealing” (Pérez-Gussinyé and Reston, 2001) of the weak crust by 
both cooling and mechanical thinning (e.g. Wernicke, 1992; Harry et al., 
1993) (Fig. 13). Wernicke (1992) defined occlusion as juxtaposition of 
gabbroic lower crust beneath brittle (but previously ductile) upper crust, 
caused by flow and exhumation of the weak layer toward uplifting 
MCCs. Pérez-Gussinyé and Reston (2001) described hyperextension, 
cooling, and complete embrittlement of the ductile lower crust following 
reduction of crustal thickness to <10 km, in reference to magma-poor 
rifted margins. We envision similar processes, but our modeling in-
corporates both thinning and cooling of the deep weak layer as well as 
exhumation and embrittlement of the stronger, shallower ductile middle 
crust (Fig. 13). However, our models do not require juxtaposition of 
gabbroic lower crust immediately beneath brittle crust (Wernicke, 
1992) or complete embrittlement of the lower crust (e.g. Pérez-Gussinyé 
and Reston, 2001; Péron-Pinvidic et al., 2013). 

Thinning, cooling, and exhumation of the weak layer apparently 
creates an intraplate rheological feedback that enhances coupling be-
tween the strong upper crust and mantle lithosphere (e.g. Wernicke, 
1992; Harry et al., 1993) (see conceptual strength profiles in Fig. 13). 
Enhanced crust-mantle coupling promotes, in turn, narrower strain 
localization (e.g. Buck, 1991; Gueydan et al., 2008; Gueydan and 
Précigout, 2014) and has been suggested to cause stronger viscous 
coupling between the lithosphere and asthenosphere (Reston, 1990a/b; 
Jolivet et al., 2018). In contrast to the decoupled, detachment- 
dominated phase of extension, the modern lithosphere in southeastern 
California is now thinned and mechanically coherent, similar to the 

Fig. 12. Crustal-scale sections of the model at BCD initiation (a) and at end of BCD slip at 7 Ma (b). Both fabrics and temperatures of crystal-plastic deformation in 
calc-(1a/b), quartz-(1a/b), and biotite-rich (2a/b) mylonites along the BCD are after Beyene (2011) (B, 2011), Hoisch and Simpson, 1993 (HS, 1993), and Lima et al., 
2018 (L, 2018), respectively. These plastic shear zones, currently exposed in the BCD footwall, are shown in their reconstructed positions along the BCD (white 
circles). The reconstructed seismogenic zones at 12 Ma and 7 Ma, shown by double-headed vertical arrows, are based solely upon temperature. See text for 
more discussion. 
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“crème brûlée” model of lithospheric strength (Jackson, 2002; Burov 
and Watts, 2006) (Fig. 13). In particular, recent studies of mantle xe-
noliths (Behr and Hirth, 2014; Bernard and Behr, 2017; Chatzaras et al., 
2015), mantle seismic anisotropy (Barbot, 2020), and post-seismic 
relaxation (Shaozhuo Liu et al., 2021) in southeastern California 
(within and near our study area as defined by Fig. 1) all support the 
existence of a vertically mechanically coherent lithosphere that is at 
least moderately coupled to asthenospheric flow. That is, stresses 
applied by gravitational potential forces, plate boundary shear, and 
basal mantle shear tractions appear to be transmitted between the 
mantle lithosphere and the crust in a fairly narrow zone of transtension 
(50–100 km) within the Eastern California Shear Zone (Behr and Hirth, 
2014; Chatzaras et al., 2015; Dixon and Xie, 2018; Liu et al., 2021). The 
modern, mechanically-coupled lithosphere there may have resulted 
directly from thinning, cooling, and partial embrittlement of the weak 
layer regionally (Wernicke, 1992; Harry et al., 1993; Pérez-Gussinyé and 
Reston, 2001) (Fig. 13). 

Evolving coupling strength between different rheological layers in 
the lithosphere strongly influences the geodynamic evolution of conti-
nental rifts, MCC exhumation, and magma-poor rifted margins (e.g. 
Buck, 1991; Pérez-Gussinyé and Reston, 2001; Wijns et al., 2005; Lavier 
and Manatschal, 2006; Mohn et al., 2012; Péron-Pinvidic et al., 2013; 
Naliboff and Buiter, 2015; Labrousse et al., 2016; Jolivet et al., 2018; 
Korchinski et al., 2018; Osmundsen and Péron-Pinvidic, 2018; Chenin 
et al., 2020). Models of magma-poor rifted-margin evolution predict an 
ocean-ward migrating locus of strain on faults and shear zones, in which 
upper crustal extension is balanced by lower crustal flow during the 
stretching and thinning phases (Péron-Pinvidic et al., 2013; Brune et al., 
2014). Necking of the full (remaining) crustal thickness proceeds after 

the flowing mid-lower crustal material thins and cools to the point of 
embrittlement and mechanical coupling (Pérez-Gussinyé and Reston, 
2001). Shear zones in the upper crust are then thought to interact with 
those in the lower crust and mantle lithosphere during coupled hyper-
extension (Reston, 2009; Mohn et al., 2012; Péron-Pinvidic et al., 2013; 
Brune et al., 2014; Naliboff et al., 2017). 

The transition between thinning and hyperextension is facilitated by 
“annealing” the weak layer (Pérez-Gussinyé and Reston, 2001) with 
reference to magma-poor rifted margins, and is not much different from 
“occlusion” (Wernicke, 1992), applied to MCCs. Occlusion of the weak 
layer was likely reached at ca. 7–6 Ma in an ~200 km-long north-south 
belt of MCCs around our model transect (Fig. 1), when ductile middle 
crust was exhumed beneath detachment faults regionally (Holm and 
Dokka, 1991, 1993; Hoisch and Simpson, 1993; Oldow et al., 1994; 
Hoisch et al., 1997; Beyene, 2011; Bidgoli et al., 2015a; Sizemore et al., 
2019). This timing coincides well with an east-to-west migration in the 
locus of regional upper-crustal extension (e.g. Snow et al., 1999; Mon-
astero et al., 2002; Walker et al., 2014) away from the MCC belt, similar 
to ocean-ward younging normal fault systems along magma-poor mar-
gins (Reston and McDermott, 2011). 

Changes in deformation style and locus following footwall exhu-
mation in MCCs suggests that occlusion is common and that it changes 
the integrated mechanical behavior of the lithosphere. Late Miocene 
exhumation of MCCs in the western salient of the USA MCC belt (Fig. 1) 
suggests close temporal association of weak layer annealing and onset of 
strong coupling both within the lithosphere and between the lithosphere 
and asthenosphere (Behr and Hirth, 2014; Chatzaras et al., 2015; Dixon 
and Xie, 2018; Barbot, 2020; Liu et al., 2021). Similarly, west- and 
southwest-migration of Miocene-Pliocene strain and younger high-angle 

Fig. 13. Crustal-scale area-balanced sections showing conceptualized thermo-rheological evolution and strain partitioning during large-magnitude extension from 
16 Ma (top) to 7 Ma (bottom). Concept adapted from Wernicke (1992); his Figs. 8 & 9) to match our modeled temperatures and kinematics. Initial rheological layers 
are defined by model isotherms, crustal thickness reconstruction (Bahadori et al., 2018), and gabbroic lower crust thickness from modern P-wave tomography (Lee 
et al., 2014) and gravity modeling (Hussein et al., 2011). Conceptual strength profiles are loosely based on Wernicke (1992) and Jackson (2002), assuming a 
10− 14 s− 1 strain rate and our model geotherms. Solid white lines indicate the BCD and OHD. White circles are reconstructed thermochronometry samples (Beyene, 
2011). Approximately 20% of the weak mid-crustal area at 16 Ma is missing at 7 Ma, which we attribute 3D flow of the weak middle crust out of the section plane, 
melting and eruption of mid-crustal silicic magmas, and/or inaccurate paleo-crustal thickness estimates. lc: lower crust, mc: middle crust, uc: upper crust. BPT: 
brittle-plastic transition. 
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faults overprinting back-tilted detachments may have occurred in both 
the lower Colorado River extensional corridor (e.g. Singleton, 2015; 
Zuza et al., 2019; Thacker et al., 2020) and northern Basin and Range 
province (e.g. Wernicke, 1992; Harry et al., 1993), following mid-crustal 
exhumation beneath regional detachments there. Overprinting fault 
relationships in the Menderes MCC of western Anatolia (Oner and Dilek, 
2013) suggest that occlusion-like processes may have operated there as 
well. 

5.4. Stress-rotations in the brittle-plastic transition zone: Mechanical 
implications for low-angle normal fault initiation 

The reconstructed orientations of the BCD-related mid-crustal shear 
zones (Fig. 12) allows inference of the maximum principal stress 
orientation near the base of the brittle crust, which informs models for 
detachment fault slip and initiation. Because plastic shear zones lie at 
~45◦ to the maximum principal stress σ1, and given the dip range dis-
cussed above, we suggest that σ1 plunged 65◦ ± 7◦ NW in the calc- 
mylonitic root zone of the BCD (~220–325 ◦C; ~ Fig. 11) (including 
currently subhorizontal and gently NW-dipping shear zone fabrics in our 
section plane; Hoisch and Simpson, 1993; Beyene, 2011); it may have 
plunged less steeply where the biotite-rich mylonites and GBM- 
dominated quartz shear bands formed (Fig. 12). This assumes that our 
cross-section plane is perpendicular to σ2. Similar stress orientations 
were derived empirically for the Whipple detachment fault (σ1 plunge of 
61–71◦ NE; Axen, 2020), based on fault dip ranges, paleopiezometry 
(Behr and Platt, 2011) and fluid inclusion studies of the fault rocks 
(Selverstone et al., 2012). Stress rotation also is inferred commonly for 
other detachment faults based on their reconstructed low angles of 
initiation and high-strength fault rocks (see Axen, 2004; Collettini, 
2011). 

However, it is unclear what causes stress rotations and whether they 
are a local or regional phenomenon. Localized stress rotations produced 
by mechanical anisotropy are documented in plastic shear zones (e.g. 
Treagus, 1973; Wells, 2001), inferred for fractured damage zones sur-
rounding brittle faults (e.g. Faulkner et al., 2006), and between sedi-
mentary lithologies (Casey, 1980; Bradshaw and Zoback, 1988). These 
could be exaggerated by permeability anisotropy associated with folia-
tions, fractures, and microcracks, depending on their orientation (Healy, 
2009). Crustal scale stress rotations have been produced in layered and 
elastic numerical models. Melosh (1990) used layered models to show 
that regional-scale stress rotations are a natural consequence of a low- 
viscosity lower crust and high strain rate. Elastic numerical models 
have also generated stress rotations by applying asymmetrical boundary 
forces, appealing to calling on mid- to lower-crustal flow-induced basal 
shear traction (Yin, 1989; Harry et al., 1993; Westaway, 1999) or lateral 
gradients in vertical basal traction due to a crustal root (Spencer and 
Chase, 1989). 

Tectonic-based quantification of asymmetric boundary forces that 
may rotate the stress field regionally have been limited. Axen (2020) 
showed that top-NE basal shear (due to Orocopia Schist exhumation) or 
dynamic buoyancy (due to appearance of a slab-free window) could 
have rotated stresses regionally in MCCs of the lower Colorado River 
extensional corridor (Fig. 1). Combined plate kinematic and volcanic 
field reconstructions place a slab window beneath the Death Valley area 
at ~12–10 Ma (Atwater and Stock, 1998; Dickinson, 2002), about when 
major detachment faults initiated there (Wernicke et al., 1988; Holm 
and Dokka, 1991, 1993; Hoisch and Simpson, 1993; Oldow et al., 1994; 
Hoisch et al., 1997; Beyene, 2011; Bidgoli et al., 2015a; Sizemore et al., 
2019). Furthermore, continent-scale topographic reconstructions (Zhou 
and Liu, 2019) suggest that, from 20 to 0 Ma, dynamic topography in the 
Death Valley-Las Vegas area (Fig. 1) increased from 0 to 1000 m during a 
monotonic overall decrease in elevation. This suggests that the 
asthenospheric flow-driven vertical buoyancy force model of Axen 
(2020) may apply to the Death Valley region, and that stress rotations 
were regional. Stress-rotation in the deep brittle crust (of the modern 

western USA) is supported by low-angle (30◦-35◦) moment tensor so-
lutions associated with the 2020 Mw = 5.7 Magna, Utah earthquake, 
which ruptured the province-bounding, listric Wasatch fault (Pang et al., 
2020). 

5.5. Shallow brittle-plastic transition and thin seismogenic zone along 
exhumed detachments 

Rapid footwall uplift beneath detachment faults may advect suffi-
cient heat to thin significantly the seismogenic zone as defined by 
temperature, possibly contributing to the lack of observed seismicity 
along active but partly exhumed detachments globally (Jackson and 
White, 1989; Wernicke, 1995; Collettini, 2011; Styron and Hetland, 
2014). Our preferred thermo-kinematic models (Table 3) all suggest that 
the active upper BPT, corresponding to the depths between the 250 ◦C 
and 325 ◦C isotherms, was uplifted 4–5 km during rapid BCD footwall 
exhumation from 12 to 7 Ma (Fig. 12). The BPT along the BCD was 
elevated from ~7.5–9.5 km to 4–5 km over 5-Myr (Fig. 12b). Subsequent 
conductive cooling from 7 to 0 Ma increased the depth of the BPT to 
~6–7 km (compare Fig. 7g & h). The shallow BPT predicted by our 
forward models is supported by the geophysics-based analytical models 
of Zuza and Cao (2020), which found an inverse correlation between 
surface heat flow and seismogenic thickness. 

Thinning of the seismogenic zone along the BCD by uplift of its base 
likely was augmented by development of creep-prone, weak minerals 
along the shallow portion of the fault, which probably lowered the top of 
the seismogenic zone (Collettini and Sibson, 2001; Collettini, 2011). 
These processes may explain the apparent absence of large-magnitude 
earthquakes on exhumed detachment faults globally. Along the BCD, 
the zones of shallow, weak fault creep and crystal-plastic strain (espe-
cially in carbonates) may have nearly coalesced (Fig. 12b). The BCD 
locally displays 1–10 m of foliated, clay-rich gouge at the base of the 
upper plate (Hoisch, pers. comm.; Lutz et al., 2019), suggesting that 
creep probably characterized the shallow BCD sections. Weak clays are 
stable up to 160–200 ◦C (Haines and van der Pluijm, 2012) and may 
exhibit velocity strengthening behavior up to 250 ◦C (Hartog Den et al., 
2012; Hartog Den et al., 2013; Hartog Den and Spiers, 2013); strain 
softening in calc-mylonites, which are common in the uppermost BCD 
footwall, flowed at temperatures as low as 220 ◦C (Beyene, 2011) 
(Fig. 12). This suggests that, at times, no part of the BCD could nucleate 
large earthquakes. However, seismic ruptures can propagate both down 
into the BDT zone (Scholz, 2002; Aharonov and Scholz, 2018, 2019) and 
up through velocity-strengthening fault patches (e.g. Collettini et al., 
2019). The early BCD, before significant uplift and heat advection, may 
have failed seismogenically at a low-angle in the deep brittle crust, 
similar to active examples low-angle normal faults in southern Tibet 
(Monigle et al., 2012), the northern Basin and Range (Pang et al., 2020), 
southeastern Papua New Guinea (Biemiller et al., 2020a/b; Cummins 
et al., 2020; Mizera et al., 2020), and other extensional systems globally 
(Abers, 2001). 

In contrast, the seismogenic zone thickness relevant to faults in 
detachment upper plates may be greater than that along detachments 
themselves. Formation of foliated clay gouges is more prevalent along 
large-displacement faults (e.g. Rowe and Griffith, 2015) than along 
smaller-offset faults, due to increased fault-related damage and fluid 
flow with slip. Thus, top-down thinning of the seismogenic zone by 
formation of clay gouge may not occur on modest-displacement upper- 
plate normal faults that are common above detachments. We believe this 
may have been the case along the BCD. This disparity in fault rock ar-
chitecture may contribute to the predominance of steep normal fault 
earthquakes in compilations (e.g. Jackson and White, 1989). Some 
foliated clay gouges are derived, at least in part, from detrital and 
authigenic clays present in sedimentary protoliths (e.g. van der Pluijm 
et al., 2001; Haines and van der Pluijm, 2008; Haines et al., 2009; Haines 
and van der Pluijm, 2012). This likely was true along the base of the BCD 
upper plate, which is a thick, clastic, passive margin sedimentary 
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sequence (see stratigraphic sections in Fig. 3 & Fig. B.2). Upper-plate 
faults have not been described in adequate detail to address this issue in 
our study area. 

6. Conclusions 

We present the first regional-scale, cross-sectional thermo-kinematic 
models of extensional detachment faulting globally (that we know of). 
Stepwise, iteratively achieved reconstructions of fault geometry and 
crustal thermal state yield model footwall cooling histories consistent 
with ZHe thermochronometric data (Beyene, 2011) (Figs. 9-11; Table 4). 
The stepwise reconstructed geometry and thermal state of our cross 
section (Fig. 10) reveal the kinematic and rheological evolution of the 
detachments and surrounding crust (Figs. 12 & 13), respectively, during 
continental rifting. These are used to inform conceptual models for 
large-magnitude crustal extension and detachment fault mechanics. The 
following conclusions are reached:  

1) Two detachment faults in the Death Valley region, California, USA 
(the BCD and OHD) initiated and slipped at low angles (9–34◦), ac-
commodating ~72 km of NW-directed extension from 16 to 7 Ma; 
~57 km of which accrued from ~12–7 Ma (11.4 mm/yr horizontal 
extension rate).  

2) The detachment faults almost certainly soled initially into the top of 
a 15–26 km-thick layer of weak, quartz-rich middle crust that 
decoupled heterogeneous upper crustal extension from both the 
lower crust and mantle lithosphere, inconsistent with models of 
normal-sense simple shear of the whole lithosphere.  

3) The weak, quartz-rich middle crust largely cooled through the 600 ◦C 
isotherm by ~7 Ma, effectively ending decoupling behavior and 
likely increasing mechanical coupling of the lithosphere.  

4) Thinning and cooling of the weak layer at ~7 Ma coincided with a 
westward migration in the locus of transtension regionally, sup-
porting that this process mediates intraplate strain patterns (e.g., 
Wernicke, 1992).  

5) The BCD footwall cooled at a maximum rate of 35–62 ◦C/Myr during 
rapid (~7.5 mm/yr) slip, and upward heat advection raised the 
geotherm locally to 40 ◦C/km subjacent to the detachment, shal-
lowing the top of brittle-plastic transition to ~4–5 km depth.  

6) A thin seismogenic zone associated with the shallow brittle-plastic 
transition and development of weak, creep-prone, clay-rich fault 
rocks along detachments helps explain the lack of large historical 
earthquakes on active low-angle normal faults.  

7) The reconstructed attitudes of plastic shear zones along the BCD 
indicate rotation of the maximum principal stress away from verti-
cal, which, we speculate was caused by mantle flow through a slab 
window that appeared beneath the study area at ~12 Ma, when 
detachment faults initiated regionally. 
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Brune, S., Heine, C., Pérez-Gussinyé, M., Sobolev, S.V., 2014. Rift migration explains 
continental margin asymmetry and crustal hyper-extension. Nat. Commun. 5, 855. 
https://doi.org/10.1038/ncomms5014. 
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