GEOL 491: Tectonic Evolution of North America

Brandon Lutz; blutz@nmsu.edu

Introduction/Contact

Course name: Tectonic Evolution of North America

Times: T, R 1:30-2.45 pm

Instructor: Brandon Lutz, <u>blutz@nmsu.edu</u>; zoom meetings by appointment

Course Description

This is a capstone course for the NMSU Geology Program. It is designed to synthesize and reinforce the core skills learned during an NMSU undergrad geology degree. We will use North America as a mobile.

Student outcomes:

- 1. Understand how different geological, geophysical, and geochemical data are used to inform the structure, composition, and tectonic evolution of continental lithospheres
- 2. Improve scientific reading and writing skill
- 3. Learn new & practice old skills for analyzing, modeling, and visualizing plate tectonics
- 4. Define the key processes that shape the lithosphere from the surface to the asthenosphere
- 5. Grasp the tectonic history of North America
- 6. Identify rock units in New Mexico and understand their tectonic setting/history

Grading

Exercises 30% (300 pts/10 = 30 pts per exercise)Reading Responses 10% (100 pts/10 = 10 pts per exercise)Reading Guides 10% (100 pts/10 = 10 pts per exercise)Participation/Quizzes 10% (100 pts/10 = 10 pts per exercise)

 Term Paper
 30% worth 300 pts

 Final Exam
 10% worth 100 pts

 Total:
 100%/1000pts

Course Structure

Tuesdays by 12:30 pm: Complete Reading Responses (RR) and Reading Guides (RG)

- RR: 1/2 page summaries of assigned academic literature
- RG: specific questions from assigned reading (from literature and Blakey book)

Tuesdays 1:30-2:45 pm:

- Lecture and in-class discussion of the topics covered in readings (mostly ppt & whiteboard)
- Usually a quiz toward the end of class about learned material (made easy)
- Bring up any questions related to previous week's exercise

Thursdays by 12:30 pm:

• Exercises from previous week turned in

Thursdays 1:30-2:45 pm:

• Some lecture; introduce method and begin new exercise

Brandon Lutz; <u>blutz@nmsu.edu</u>

Weekly Reading Responses

Due Tuesdays (a) 12:30 pm. They should only take 1 hour if done properly. Submit as .pdf via canvas

- Read assigned academic journal article
 - O DO NOT READ LIKE A NOVEL
 - Key to effective science reading/writing = brevity
 - o ABSTRACT, SKIM, FIGURES/CAPTIONS, CONCLUSIONS (MAYBE GO BACK)
 - o Do not get lost in the details. "don't miss the forest for the trees"
- Write a succinct, ½ page summary of the article, answering the following prompts:
 - O What is the main problem of purpose of the paper/study?
 - o How was this problem addressed/purpose served?
 - o What are the main conclusions and implications of the study? Why important?

Weekly Reading Guides

Due Tuesdays @ 12:30 pm. They should take 1-2 hours. Submit via Canvas

- Read assigned academic journal article & chapters from Blakey book
 - o Answer questions (short answer mostly)

Exercises

Due Thursdays (a) 12:30 pm. These will take 2-4 hours from start to finish.

- Assigned and worked on partly during Thursday class.
- Submitted the following Thursday @ 12:30 pm
- Submissions will vary.
 - o Most will involve a simple write-up (length will vary but probably 1-4 p)
 - o what you did and how and what you found
 - Format for write-ups (USE GSA Manuscript Style Template)
 - Introduction
 - summarize the whole project/exercise succinctly
 - provide any important background information
 - 1-2 paragraphs maximum
 - Method
 - What did you do?
 - How?
 - A few paragraphs maximum
 - Include figures and captions
 - Results
 - What did you find?
 - Could be presented in a table or in a figure
 - 1 paragraph maximum
 - Discussion and Conclusions
 - What does it all mean?
 - Why is it important?
 - Give a 1-2 sentence summary at the end
 - Length will vary
 - Include figures and captions

GEOL 491: Tectonic Evolution of North America

Brandon Lutz; <u>blutz@nmsu.edu</u>

More about exercises:

Whereas reading guides and reading responses help with <u>scientific literacy</u>, exercises develop and cement your <u>science approach</u> (curiosity, data collection, analysis, interpretation, hypothesis-driven research). The exercises feed off of the general topics of each week, and require you to use the core skills developed during a geology undergrad major (e.g. sed-strat, structure, min-petrology, some geophysics/Geochem).

Tentative Examples of Exercises:

- Use GPLATES to reconstruct the opening of the Atlantic Ocean & estimate spreading rates
- Interpret a seismic reflection profile and P-wave velocity model along a passive margin
- Interpret a sequence of events from an outcrop
- Use GPLATES to estimate the convergence rate between the Farallon and NAM Plates
- Build a lithosphere-scale cross-section through one of North America's Margins
- Find an outcrop of limestone close to Las Cruces; Odetermine its place in NAM tectonic history
- Create a balanced, upper-crustal cross-section through a normal & reverse fault system
- Draw a conceptual diagram of a shear zone from the surface of the Earth to the Asthenosphere
- Create an isopach map of the Cretaceous interior Seaway
- Determine the petrological setting for the Organ Mountains; Potrillos Volcanic Field
- Build a case for active subduction in the Pacific Northwest

Term Paper

March 2nd: Topic
April 6th: First Draft
April 27th: Second Draft

- 5-10 pages of text double-spaced, not including figures and captions or references
- will be much longer including these
- Topic is open. I can give you one of interest that is tangible or you can choose your own.
 - o Topics can be broad and general (process-related)
 - o Or Topics can be focused on a local to regional aspect of North American geology
- Use GSA Manuscript Template for formatting.
- Must include a reference list with proper in-text citations.
- Must include figures with captions.

Types of Term Papers:

- 1) Review paper
 - a. Takes a process, time-period, place, structure, etc
 - b. Reviews what is known about this topic, process, time-period, place, structure
 - c. Attempts to synthesize information and fill in gaps to explain outstanding issues
- 2) Proposal
 - a. Identifies and presents a problem and/or shortcoming in our understanding of process, place, etc.
 - i. This step involves a tight and concise review... (mini-review paper in itself)
 - b. Outlines a procedure for improving understanding of this.
 - c. Predicts results and explains importance.

GEOL 491: Tectonic Evolution of North America

Brandon Lutz; <u>blutz@nmsu.edu</u>

Final Exam

The Final Exam is tbd. Depending on how the semester goes, I may give you a written exam, a set of concept sketches to draw, a presentation to make, or nothing at all.

The more students keep up with the work each week, the less likely a challenging final will be. I am leaning toward concept sketches.

Late Policy

Please do not fall behind in this class. Late RRs, RGs, and exercises will be accepted at 50%. Late term papers will be accepted. But you won't get as much time to re-draft from the feedback I provide. This will strongly affect your final grade on the term paper.

Weekly Plan (Last update Jan 25th)

Week of	General Topics	Reading	Tuesday	Thursday
1/26/21 1/28/21	Whole-Earth structurePlate tectonicsLithospheres	Skim Ch. 1.Introduction	 Quiz Syllabus Whole-Earth Structure Isostasy & Flexure	Lithospheres (Oceanic/Continental) Structure, Composition, Rheology
		Download GPLATES		 Terminology Introduction to GPLATES
2/2/21	Plate tectonics review	Dickinson 1971	Plate boundaries	Euler Pole rotations
2/4/21	StructureSed basins	Ch. 3.Foundation (RG1)	/Proterozoic NAM Ex1 intro	Introduction to GPLATES
		Karlstrom_1999 (RR1)	• Quiz (RG1 & RR1 due @12:30p)	Exercise 1: Introduction to GPLATES; reconstructing Pangaea & opening of the Atlantic Ocean (Due 2/11/21)
2/9/21	Passive margins	Ch. 4.PassiveMargin	 Cordilleran passive 	 Interpreting seismic lines
2/11/21	Sedimentary faciesSequence stratigraphy	(RG2) Lister_1986 (RR2)	margin • Rifting models • Quiz (RG2 & RR2 due @12:30p)	Exercise 2: Passive Margins (Due 2/18/21)
2/16/21	Terrane accretion	Ch. 5.AntlerOrogeny	Suspect terrane	Adobe tricks?
2/18/21	Subduction zonesBack-Arc spreadingAccretionary prism	(RG3) Coney_1980 (RG3) Speed_1982 (RR3)	accretionAntler orogenyQuiz	Exercise 3: Timescale (Due 2/25/21)
			(RG3 & RR3 due @12:30p)	

GEOL 491: Tectonic Evolution of North America Brandon Lutz; <u>blutz@nmsu.edu</u>

2/23/21 2/25/21	Cont-Cont collisionIntraplate stressFlexure	Ch. 6.Pangaea (RG4) Dickinson_2003 (RG4) Kluth_1981 (RG4)	ARMSonomaHimalaya/Indo- Arabian	 ARM basins Strat-sections/Isopach maps
		Leary_2017 (RR4)	 Quiz (RG4 & RR4 due @12:30p) 	Exercise 4: Permian basin map (Due 3/04/21)
3/2/21 3/4/21	Ocean-Cont collisionContinental ArcsFold-thrust beltForeland basin	Ch. 7Wrangelia (RG5) Ch. 8Arc (RG5) Erslev_1991	 Jurassic Arc system Sevier FTB Flexure and Foreland basin 	 Analyzing and interpreting geochemical/petrographical data
	Intra-arc basin	Allmendinger_1981 (RR5)	Quiz(RG5 & RR5 due@12:30p)	Exercise 5: Sierra Nevada geochemistry (Due 3/11/21)
		Term Paper Topics Due		
3/9/21 3/11/21	Ocean-Cont collisionContinental Arcs	Ch. 7Wrangelia (RG6) Ch. 8Arc (RG6)	 Jurassic Arc system Sevier FTB	 Building 2D cross- sections
	Fold-thrust beltForeland basinIntra-arc basin	Pang_1995 Fillon_2013	Flexure and Foreland basinQuiz	 Reconstructing fold-thrust belts
	- intra-arc basin	Decelles_2009 (RR6)	(RG6 & RR6 due @12:30p)	Exercise 6: Sevier FTB & Foreland Basin (Due 3/18/21)
3/16/21 3/18/21	Flat-slab subduction	Ch. 9Laramide (RG7) Gutscher_2018 (RG7) Karlstrom_1993 (RG7)	Laramide Orogeny- Arc migrationAndean flat-slabs	P-wave TomographyLaramide Arches
		Coney_1977 (RG7) Erslev_1986 (RG7) Liu_2010 (RG7)	Extension above flat slabsQuiz	Exercise 7: Visualizing Flat Slabs (Due 3/25/21)
		Axen_2018 (RR7)	(RG7 & RR7 due @12:30p)	
3/23/21 3/25/21	Spring Break	Spring Break	SB 2021	SB 2021
3/30/21 4/1/21	Orogenic PlateauCrustal-thickening	Ch. 10Cenozoic1 (RG8) Cassel_2014 (RG8)	Nevada/Arizona- Plano	The Moho/Pn waves
	Airy Isostasy vs Flexure	Chapman_2019 (RR8)	Mechanisms of crustal thickeningQuiz	Exercise 8: Crustal thickness variations in different tectonic settings (Due 4/08/21)
			(RG8 & RR8 due @12:30p)	,
4/6/21 4/8/21		1st Draft Term Paper Due 4/06/21	Peer Review of term papers	• term paper workshopping
4/13/21 4/15/21	 Wide vs. Narrow rifts Slab Roll-back Extensional tectonics Metamorphic Core Complexes 	Ch. 10Cenozoic1 (RG9) Ch. 11Cenozoic2 (RG9) McQuarrie_2005 (RG9) vanWijk_2010 (RG9) Wernicke_1988 (RR9)	 Phases of extension in W_USA Ignimbrite flare-up Metamorphic Core Complexes & Basins Quiz 	Exercise 9: Kinematic modeling of normal fault systems (Due 4/21/21)
			(RG9 & RR9 due @12:30p)	

GEOL 491: Tectonic Evolution of North America Brandon Lutz; <u>blutz@nmsu.edu</u>

4/20/21 4/22/21	 Intra-continental shear zones Transform plate boundaries Diffuse plate boundaries Transtension/Transpression 	Ch. 11Cenozoic1 (RG10) Ch. 12Cenozoic2 (RG10) xxxx (RG10) xxxx (RG10) xxxx (RR10)	 Eastern California Shear zone San Andreas fault zone/Gulf of California Mendocine TJ Quiz 	Exercise 10: Reconstruction & modeling of intraplate deformation in Eastern California (Due 4/28/21)
	Transfersion/ Transpression		(RG10 & RR10 due @12:30p)	
4/27/21 4/29/21		2nd Draft Term Paper Due 4/27/21	no class	no class
5/4/21 5/6/21	SeismicityGPS Geodesy	Ch. 13Modern (RG11) xxx (RR11)	 Historic EQ's in W. USA Fault mechanics Quiz (RG11 & RR11 due @12:30p) 	Exercise 11: What does GPS say about the Ridgecrest EQ sequence? (Due 5/05/21)
5/11/21	EXAM week	EXAM week	EXAM week	EXAM week